Troisieme Cycle de Physique en Suisse Romande
Exercises for Lecture 1
Keith Ellis

1) Show that if both (massless) quarks have positive helicity the associated
current for small 0 is

JH = apyHug = / EqFy(2, 0,0, 2) (1)

with 0, as shown in the figure. Hence show that for small opening angle 6, the
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matrix element squared for gluon polarization in the plane is
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whilst for polarization out of the plane
2
Jett 1
|/\/lout|2 x tm =(1-2) N (3)
so that for ( 2)
1 ) 2} 1+22) 1
- . z 4
5 [Minl + Mowl| o« 5= 5 (4)

2) The plus prescription is defined as

/ dz f(2) g(2)+ :/ dz (f(z) = f(1)) g(2) (5)
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Using this result show that the moments of the splitting functions
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Hence show that for n = 2 the DGLAP takes the form
tﬁ N(2,t) \ _as(t) ([ —3Cr  3nyg %(2,t) (9)
da\ 9(2,t) ) or 3Cr  —ing 9(2,t) )

The eigenvectors and associated eigenvalues of this system of equations are

O (2,t) = %(2,t) +g(2,t) with eigenvalue 0,
4
0~ (2,t) = %(2,t) — ;Tng(Q,t) with eigenvalue — (ch + %) .
(10)
where
and X(n,t),q(n.t) and g(n,t) are the corresponding moments.
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